scholarly journals A Moisture Budget Analysis of the Protracted Heat Wave in the Southern Plains during the Summer of 1980

1987 ◽  
Vol 2 (4) ◽  
pp. 269-288 ◽  
Author(s):  
Winston Hao ◽  
Lance F. Bosart
Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yahya Darmawan ◽  
Huang-Hsiung Hsu ◽  
Jia-Yuh Yu

This study aims to explore the contrasting characteristics of large-scale circulation that led to the precipitation anomalies over the northern parts of Sumatra Island. Further, the impact of varying the Asian–Australian Monsoon (AAM) was investigated for triggering the precipitation variability over the study area. The moisture budget analysis was applied to quantify the most dominant component that induces precipitation variability during the JJA (June, July, and August) period. Then, the composite analysis and statistical approach were applied to confirm the result of the moisture budget. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Anaysis Interim (ERA-Interim) from 1981 to 2016, we identified 9 (nine) dry and 6 (six) wet years based on precipitation anomalies, respectively. The dry years (wet years) anomalies over the study area were mostly supported by downward (upward) vertical velocity anomaly instead of other variables such as specific humidity, horizontal velocity, and evaporation. In the dry years (wet years), there is a strengthening (weakening) of the descent motion, which triggers a reduction (increase) of convection over the study area. The overall downward (upward) motion of westerly (easterly) winds appears to suppress (support) the convection and lead to negative (positive) precipitation anomaly in the whole region but with the largest anomaly over northern parts of Sumatra. The AAM variability proven has a significant role in the precipitation variability over the study area. A teleconnection between the AAM and other global circulations implies the precipitation variability over the northern part of Sumatra Island as a regional phenomenon. The large-scale tropical circulation is possibly related to the PWC modulation (Pacific Walker Circulation).


2018 ◽  
Vol 31 (19) ◽  
pp. 8005-8021 ◽  
Author(s):  
Dongdong Peng ◽  
Tianjun Zhou ◽  
Lixia Zhang ◽  
Bo Wu

The ecosystem and societal development over arid Central Asia, the core connecting region of the Silk Road Economic Belt, are highly sensitive to climate change. The results derived from multiobservational datasets show that summer precipitation over Central Asia has significantly increased by 20.78% from 1961 to 2013. It remains unclear whether anthropogenic forcing has contributed to the summer wetting trend or not. In this study, the corresponding physical processes and contributions of anthropogenic forcing are investigated by comparing reanalysis and experiments of the Community Atmosphere Model, version 5.1 (CAM5.1), from the CLIVAR Climate of the Twentieth Century Plus (C20C+) Project. The observed wetting trend is well reproduced in the simulation driven by all radiative forcings (CAM5-All), but poorly reproduced in the simulation with natural forcings only (CAM5-Nat), confirming the important role of human contribution in the observed wetting trend. Moisture budget analysis shows that the observed wetting trend is dominated by the increasing vertical moisture advection term and results from enhanced vertical motion over nearly all of Central Asia. The observed contributions of moisture budget components to the wetting trend are only captured by CAM5-All experiments. The dynamic contribution is determined by the warm advection anomalies in association with a human-induced meridional uneven warm pattern. Human-induced warming increases the specific humidity over all of Central Asia, increasing (decreasing) the precipitation over the climatological ascent (descent) region in eastern (western) Central Asia.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Wengui Liang ◽  
Minghua Zhang

AbstractFuture changes of regional precipitation are of great scientific and societal interests. Large uncertainties still exist in their projections by models. Mechanistic understanding is therefore necessary. Here we demonstrate robust features of the percentage change of precipitation normalized to surface temperature change (%/K) under global warming, referred to as scaling of precipitation with temperature in East Asia. We find that land precipitation in the summer scales at ~3%/K, well below the scaling rate of the Clausius-Clapeyron relationship for atmospheric water vapor content, but the scaling in winter is comparable to the Clausius-Clapeyron scaling at ~7%/K. By using moisture budget analysis of model simulations, we show that this scaling and the seasonal contrast can be clearly attributed to the robust climate changes of steeping moisture gradient, weakening westerly jets, and increasing hydrological amplitude of atmospheric eddies.


2015 ◽  
Vol 66 (3) ◽  
pp. 265-274 ◽  
Author(s):  
Y Cao ◽  
ÉM Neif ◽  
W Li ◽  
J Coppens ◽  
N Filiz ◽  
...  

1989 ◽  
Vol 16 (2) ◽  
pp. 169-190 ◽  
Author(s):  
INGO KRUMBIEGEL ◽  
GUNTER G. SEHM

The subspecific division of the Plains Bison by one of the authors (Krumbiegel, 1980) into a Southern Plains Bison Bison bison bison (Linnaeus, 1758) and a Northern Plains Bison Bison bison montanae Krumbiegel, 1980, is here corroborated by reference to early illustrations and reports unknown to mammalogists, thereby proving that the authors' historiographical approach can be used in establishing taxonomic reconstructions of recently exterminated species or subspecies.


2011 ◽  
Vol 3 (6) ◽  
pp. 267-269
Author(s):  
P. T. Patil P. T. Patil ◽  
◽  
M. M. Jamadar M. M. Jamadar ◽  
N. A. Jamadar N. A. Jamadar
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document